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Abstract

The fluidelastic behaviour of two normal triangular tube arrays subject to cross flow have been tested. A novel

feature of the test facility is an electromagnetic device which has been used to control the system damping and to

provide additional excitation. A linearized model of the fluid force is identified for both arrays and it is shown that

nonlinear effects are more significant in the denser array. An empirical nonlinear model is proposed for this array and

the associated parameters are quantified directly from free response data using the force state mapping technique.

Although, the predicted critical velocity is accurately predicted, the limit cycle amplitude is systematically over

estimated. Nonetheless, the resulting model shows good qualitative agreement with experimentally determined system

behaviour.

r 2003 Published by Elsevier Ltd.

1. Introduction

It is well known that a single flexible cylinder in a rigid tube bundle subject to cross flow may experience large

amplitude self-excited vibration referred to as fluidelastic instability (FEI). In a heat exchanger this potentially

catastrophic phenomenon can cause total failure of a unit within a few hundred hours of operation, as detailed by

Paidoussis (1979). A less severe but equally important consequence is the increased fretting wear caused by the tubes

impacting with baffles. The subject of fluidelastic instability in tube arrays has been reviewed in some detail by, for

example, Price (1995) and Weaver and Fitzpatrick (1988).

Considerable progress has been made towards reliable linear models, both theoretical and semi-empirical, which can

predict the critical velocity at which fluidelastic instability occurs. However, the relationship between the dynamic fluid

force and the tube motion is inherently nonlinear as the tube vibration is often self-limiting at post-stable flow velocities.

Price and Valerio (1990) and Rzentkowski and Lever (1992) have extended linear models to include nonlinear effects,

with limited success. Linear fluid force models have also been used in conjunction with nonlinear structural models to

investigate tube impacting on baffles (e.g., Paidoussis and Li, 1992). While it is true that structural nonlinearities, such

as impacting, will be more significant, Price (1995) noted that a nonlinear fluid force model is still desirable since it will

determine the energy available in the system at impact.

This paper presents an experimental study in two normal triangular tube arrays. The necessity of a nonlinear

model is explored by first considering a linearized empirical model based on large amplitude motion. An empirical

nonlinear fluid force model is then proposed for one of the arrays, and the parameters of the model are quantified using

an inverse method, the force state mapping technique. Although previous studies (e.g., Tanaka and Takahara, 1981;
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Chen et al., 1994) have successfully identified linearized parameters for the fluidelastic forces by directly measuring

the forces acting on the vibrating tube, these approaches are not readily applicable in this study for several reasons.

Firstly, in those studies the tube array is subject to a cross flow of water for most tests, and so the relative magnitude

of the fluid forces is much larger than is found for air (or gas) flow. Secondly, no account is taken of the inertial

force ðms .yÞ of the structure in the parameter estimation procedure of these studies. This is permissible when the

fluid forces are significantly larger than the inertial force as will be the case in water flow but not in air flow. Finally,

and perhaps most importantly, in both those studies the behaviour of a fully flexible array was considered, and

so the dominant mechanism for fluidelastic instability is likely to be stiffness controlled. Indeed, the fluid

damping, which is of primary importance in this study, is not even considered as a separate parameter in the analysis

of Tanaka and Takahara (1981), but rather is included as the imaginary part of a complex fluid force coefficient,

which implicitly assumes a linear relationship between the fluid force and the tube motion. In the work of Chen et al.

(1994) the linear fluid damping has been estimated directly, but the values obtained will be very sensitive to

the phase characteristics of the instrumentation. For these reasons, an inverse method of parameter identification

was chosen.

Only single degree of freedom oscillation in the lift direction is considered for a single flexible tube in an otherwise

rigid array, which may not be indicative of a fully flexible array. Furthermore, as has been shown previously by

Austermann and Popp (1995), the behaviour of the tube array may also depend on the position of the flexible tube.

Therefore, the specific results obtained here may not be generally applicable to all normal tube arrays. However, the

techniques described offer a method for more thorough validation of theoretical models than is possible simply by

comparing limit cycle amplitudes and provide a framework for experimental investigation of the nonlinear behaviour of

the coupled fluid–structure system.

Nomenclature

A limit cycle amplitude

Ai;Bi;Ci;Di coefficients of polynomial curve fit

cem additional damping from EMS

cf linear fluid damping

cs linear structural damping

d tube diameter

E fluidelastic force

fn natural frequency (Hz)

F restoring force

Gem EMS constant

kf linear fluid stiffness

ks linear structural stiffness

mf fluid added mass

ms modal mass of the structural

P array pitch

R circuit resistance

T turbulent excitation force

U free-stream fluid velocity

Uc critical free-stream velocity

Vr reduced gap velocity

W work

y tube displacement

a1�5 linearized response parameters

b cubic fluid damping

d logarithmic decrement

dr mass damping parameter

z effective damping ratio

Z cubic fluid stiffness

o natural frequency (rad/s)
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2. Experimental facility

The tests were carried out in a down draught wind tunnel (test section dimensions of 300 mm� 300 mm� 750 mmÞ
with a velocity range from 2 to 20 m=s and a free-stream turbulence level of less than 1%. An array of 38 mm diameter

cylinders arranged in a normal triangular pattern, was placed in the test section as shown in Fig. 1. Two arrays with

pitch ratio ðP=dÞ of 1.32 and 1.58 were tested.

The tubes of each array were rigidly supported, except for one in the third row (shaded in Fig. 1) which although

rigid, was supported at one end by a flexible mount consisting of two aluminium beams ð3 mm� 50 mm� 500 mmÞ set
parallel to each other 80 mm apart outside the wind tunnel. A sketch of the mounting scheme can be seen in Fig. 2. The

advantage of this arrangement is that all motion is effectively suppressed except translation in the direction

perpendicular to the flow. In contrast, a simpler cantilever support (commonly used in these types of experiments in the

past) would permit pitching of the tube, while supporting the tube at both ends introduces a hardening spring effect.

Pitching of the tube on the current setup is possible, but this involves higher modes of vibration as the rotational

stiffness of the tube mount is large when compared to a cantilever support.

A series of random force response tests were conducted in quiescent air at several levels of excitation to ensure that

the structure was dynamically linear, to locate the modes of the structure and identify the structural modal parameters.

The natural frequency of the first structural mode was at 6:6 Hz; while that of the next mode was above 70 Hz: These
tests demonstrated that the system behaves as a linear single degree of freedom system in the frequency range of interest.

P (=50mm)

d (=38mm)

U

x

y

Fig. 1. Schematic of cross flow system.

Fig. 2. Flexible tube detail.
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A novel feature of the rig was a custom built electromagnetic shaker (referred to below as the EMS) which allowed

the tube to be excited with an additional force. The shaker consists of a permanent magnet with an annular gap between

the poles through which a copper coil wound around a cylinder of resin-impregnated paper may move. The magnet is

fixed to the wind tunnel while the coil is attached to the tube support. In contrast to commercially available devices,

there is no structural connection between the coil and the magnet so the apparent structural stiffness is not modified.

Once the coil is part of an electrical circuit, the EMS introduces additional damping to the system. The level of damping

can be chosen by changing the total electrical resistance in the circuit. This method of adjusting the damping is similar

in principle to that used by Andjelic and Popp (1989), but has the advantage of being passive, so that the EMS can be

used as a passive damping device and as an excitation source simultaneously. It can be shown that the additional

damping force will be inversely proportional to the resistance of the circuit:

cem ¼
Gem

R
; ð1Þ

where cem is the additional electromagnetic damping, Gem is a constant which depends on the geometry and magnet flux

density of the EMS, and R is the circuit resistance. It has been found that the variation of the apparent total structural

damping with circuit resistance follows the theoretical trend very well. Furthermore, the natural frequency is unaffected

so that damping can be modified independently of the stiffness or mass.

Tube acceleration was measured using a piezoceramic (charge) accelerometer with a useful frequency range of 0.2–

3500 Hz (based on a maximum 5% variation in sensitivity). The accelerometer was mounted on the tube support as

shown (Fig. 2). A laser vibrometer was focused on the accelerometer to provide a direct measure of the instantaneous

velocity. The performance of the laser vibrometer is defined by an envelop bounded by a minimum amplitude of

vibration of 10 nm; a maximum velocity of 2 m=s and a maximum frequency of vibration of 10 kHz: The sensitivity is
constant from DC to the maximum frequency. Tube displacement was monitored with a noncontact capacitive

displacement transducer which can measure vibration up to 5 kHz with an accuracy of 0.04% of the full-scale

deflection. The readings from these instruments were digitized and logged using an 8 channel, 13-bit, synchronous data

acquisition frame. Each channel had an independent progammeable gain amplifier and autoranging facility to ensure

that at least 12 bits per channel were used in each data acquisition so as to minimize quantization error.

3. Fluidelastic thresholds

A series of tests were conducted to investigate the stability thresholds of the two array geometries with the one degree

of freedom tube located in the third row. At each flow velocity the tube was released from rest and then allowed 300 s to

establish a steady motion. The resistance in the EMS circuit was varied to obtain three different levels of damping for

each array so that the instability thresholds lay within the wind tunnel velocity range.

Figs. 3 and 4 show the r.m.s. of the tube displacement for array pitch ratios of 1.58 and 1.32, respectively. The rapid

increase in vibration amplitude characteristic of fluidelastic instability is apparent and it is obvious that the value of

damping determines the flow velocity at which this occurs. This is the instability threshold or critical velocity, Uc and it

was found in both arrays to be independent of whether the flow velocity was increasing or decreasing (i.e., there was no

evidence of hysteresis).

An abrupt drop in amplitude at around 9 m=s can be seen in Fig. 4 for the pitch ratio of 1.32. Unlike the critical

velocity, this drop does not depend on damping. A loud acoustic resonance was clearly audible at this velocity and the

frequency (determined with a microphone outside the windtunnel, downstream of the array) was found to be 1053 Hz:
Unfortunately the limit of the wind tunnel velocity range with this array was 9 m=s so it was impossible to explore the

behaviour of the array at higher velocities and so verify that the instability would in fact re-establish itself after the

conditions for acoustic resonance had been exceeded. A similar effect was reported by Price and Zahn (1991) and their

observations indicated that the interaction between the acoustics and the structural dynamics could augment instability

as well as suppressing it.

Based on a width of 300 mm the second transverse acoustic mode of the duct would be 1130 Hz: However, as the
wind tunnel walls are slightly compliant, a figure of 1053 Hz is not unreasonable. No such resonance was observed for

the pitch ratio of 1.58, suggesting that the resonance is particular to this array, rather than to the wind tunnel. Fig. 5

shows the tube-free response spetcra for the range of flow velocities. The power spectra, in decibels, have been scaled

and offset for clarity. A peak (denoted by 3) whose frequency depends on flow velocity indicates excitation by vortex

shedding with a Strouhal number of 2.2 based on free-stream flow velocity. This figure is consistent with results of both

Polak and Weaver (1995) and Oengoren and Ziada (1998). At 9 m=s this Strouhal number yields a shedding frequency
of 522 Hz; which is close to half the acoustic resonance frequency. It might have been expected that the vortex shedding
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Fig. 4. R.m.s. of tube motion. P=d ¼ 1:32 at three levels of damping: D; d ¼ 0:093; 3; d ¼ 0:106; r; d ¼ 0:114:
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Fig. 3. R.m.s. of tube motion. P=d ¼ 1:58 at three levels of damping: D; d ¼ 0:015; 3; d ¼ 0:023; r; d ¼ 0:031:
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Fig. 5. Power spectra of tube acceleration; P=d ¼ 1:32: Vortex shedding peak denoted with 3:
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would excite the first acoustic mode, however, Oengoren and Ziada (1998) note that under certain circumstances the

first acoustic mode is completely suppressed. Additional work is needed to investigate the interaction of vortex

shedding, acoustic resonance and tube vibration, however, further analysis is beyond the scope of the current study.

The critical velocities obtained from Figs. 3 and 4 are shown in Table 1. The reduced velocity is simply the

nondimensionalized critical velocity. The reduced gap velocity, which was proposed by Chen (1984) in an attempt to

collapse data from different array geometries and pitch ratios, is defined as

Vr ¼
P

P � d

� �
U

fd

� �
1

2:105ðP=d � 0:9Þ

� �
: ð2Þ

The stability threshold in terms of the reduced gap velocity is shown in Fig. 6 together with data from Austermann

and Popp (1995) and Price and Zahn (1991). These two sources are by no means the only data available, but they

have a similar set-up (normal triangular array with a single flexible cylinder in air). As can be seen, the current results

compare favourably with the data available from these studies indicating that the experimental facility is typical of

other reported rigs.

The simplest evidence of nonlinearity in the coupled flow–structure system can be seen in the variation of limit cycle

amplitude with flow velocity (Figs. 3 and 4). Since the structure is linear, the fact that the tube exhibits a finite limit cycle

amplitude, rather than simply a dynamic divergence, indicates that there must be a nonlinear relationship between tube

motion and the fluid force. However, the presence of these nonlinearities may not be significant in tube motions at lower

amplitude. In order to assess whether a full nonlinear model is necessary, linearized fluid force parameters have been

examined.

Table 1

FEI thresholds

Pitch ratio ðP=dÞ 1.58 1.58 1.58 1.32 1.32 1.32

Logarithmic decrement, d 0.015 0.023 0.031 0.093 0.106 0.114

Critical velocity, Uc (m/s) 7.1 8.5 10.3 4.1 5.5 6.5

Reduced velocity, Uc=ð fndÞ 28.1 33.6 40.8 16.2 21.8 25.7

Reduced gap velocity, Vr 33.9 40.5 49.1 57.3 77.1 90.8
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Fig. 6. Comparison of measured stability threshold: r; Austermann and Popp (1995), P=d ¼ 1:25; D; Austermann and Popp (1995),

P=d ¼ 1:375; 3; Price and Zahn (1991), P=d ¼ 1:375; \; present, P=d ¼ 1:58; ~; present, P=d ¼ 1:32; - - -, linear model, P=d ¼ 1:58;
—, linear model, P=d ¼ 1:32:
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4. Linearized fluid force model

Granger (1990) has estimated the linear stiffness, damping and mass associated with the fluid force directly from

turbulent buffeting. That study was, in effect, examining small perturbations from the equilibrium position. The

parameters obtained gave excellent predictions for the FEI threshold and the vibration amplitude before the onset of

instability. The quality of the model predictions is indicative of the fact that the onset of FEI, which is an unstable

perturbation, is governed by the linearized parameters for small motions about the equilibrium.

In this study, the linearized parameters have been obtained from large amplitude vibrations (i.e., motion not in

the vicinity of the equilibrium) and then used to predict the stability thresholds (Fig. 6). Comparison between

these predictions and the experimentally determined values offers an indication of the applicability of a nonlinear fluid

force model.

A series of transient tests in which the flexible tube was given an initial displacement of 11 mm and released from rest

were conducted for a range of flow velocities and levels of structural damping. The data acquisition was triggered by the

tube velocity so that it was possible to perform an ensemble average in the time domain. For each condition (fluid

velocity and structural damping) 10 records, each with 4 s of data at a sampling rate of 2048 Hz were obtained and

averaged.

4.1. Identification technique

The equation of motion for the tube under fluid loading is

ms .yi þ cs ’yi þ ksyi ¼ Eðyi; ’yi; .yiÞ þ TiðtÞ; ð3Þ

where yi is the displacement of the tube in test i; cs is the system damping in quiescent air, ks is the system stiffness in

quiescent air, Eðy; ’y; .yiÞ is the fluidelastic force, TiðtÞ is the turbulent excitation in test i:
Assume that the response can be decomposed into the sum of the response to the fluidelastic excitation and the

random turbulent excitation,

yiðtÞ ¼ yEðtÞ þ yT ðtÞ; ð4Þ

where yEðtÞ and yT ðtÞ are defined by

ms .yE þ cs ’yE þ ksyE ¼ EðyE ; ’yE ; .yEÞ; ð5Þ

ms .yT þ cs ’yT þ ksyT ¼ TðtÞ: ð6Þ

This assumes there is no interaction between the excitation mechanisms (i.e., the right-hand side of Eqs. (5) and (6)

are linearly independent). Strictly speaking this is not valid, since the fluidelastic excitation depends on tube motion

which will in turn be influenced by the turbulent excitation. However, if the tube motion is large, this interaction will be

small. If n tests are conducted with the same initial conditions, one would expect yEðtÞ to be identical for each test. The

turbulent response yT however will vary randomly from one test to the next, so as n-N;
P

yT ðtÞ-0: Thus if the
ensemble is averaged, only the fluidelastic response will be left

yðtÞ ¼
1

n

Xn

i¼1

yiðtÞE
1

n

Xn

i¼1

yEðtÞ: ð7Þ

The equation of motion associated with the ensemble average response is

ms .y þ cs ’y þ ksy ¼ Eðy; ’y; .yÞ: ð8Þ

It has been widely assumed that if the vibration amplitude is small, this force can be represented as a second order

differential operator (e.g., Granger, 1990)

Eðy; ’y; .yÞ ¼ �mf .y � cf ’y � kf y; ð9Þ

where the subscript f denotes the fluid dynamic parameters.

Since the fluid in this study is air, the added fluid mass, mf ; is negligible, so that the linearized equation of motion for
the system becomes

ms .y þ ðcs þ cf Þ ’y þ ðks þ kf Þy ¼ 0: ð10Þ
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The transient velocity response of Eq. (10) is

’yfit ¼ a1e�a2t sinða3t þ a4Þ þ a5; ð11Þ

where a1; a4 are arbitrary constants, a2 ¼ ðcs þ cf Þ=ð2msÞ ¼ zo; a3 ¼ oE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðks þ kf Þ=ðmsÞ

p
; a5 is the mean value.

Although a nonzero mean tube velocity is unrealistic, it is permitted here to account for any DC bias introduced by

the instrumentation.

The experimental transient response can now be fitted to the exponentially decaying sinusoid given by Eq. (11). This

is achieved by using the downhill simplex search (Nelder and Mead, 1965) to minimize the objective function

e ¼
X4s

t¼0

j ’yðtÞ � ’yfitðtÞj; ð12Þ

with the five parameters, ai; i ¼ 1y5 as variables. An example of a curve fit obtained in this way can be seen in Fig. 7.

The fitted curve has been decimated in the plot for clarity.

Once estimates of these parameters have been obtained the fluid damping and stiffness coefficients can be recovered

easily since the modal parameters of the structure are known.

4.2. Linearized fluid force parameters

Linearized fluid force parameters have been obtained for both arrays (P=d ¼ 1:58 and 1.32), with the flexible tube in

the third row at various levels of structural damping. The equivalent linear damping coefficient, cf ; associated with the

fluid force is shown in Figs. 8 and 9 for pitch ratio of 1.58 and 1.32, respectively. The coefficients are negative, indicating

that the fluid is imparting energy to the structure, rather than dissipating it. Initially, at low flow velocity, there is some

evidence to suggest that the net damping in the 1.58 array is increased by the fluid loading. This is supported by Granger

(1990) who measured a fluid damping 6 times larger than the structural damping at low velocities, but that study was in

water. This increase is caused by the fluid dynamic drag which occurs even in quiescent fluid. The magnitude of this

drag force increases quadratically with the flow velocity while the direction of the drag force rotates from the transverse

direction at zero flow to close to the inline direction when ’y5U : At intermediate velocities, the destabilizing

components of the fluid elastic force begin to dominate and the fluid damping decreases almost linearly with flow

velocity.

The fluid stiffness has been extracted from the raw parameter estimates, although it is not as critical as the fluid

damping for this type of fluidelastic instability. The fluid stiffness for each array is plotted in Figs. 10 and 11.

Interestingly, the data for P=d ¼ 1:58 follows closely a quadratic variation with flow velocity, suggesting a dependence

on the flow dynamic head. This is not true for P=d ¼ 1:32 where the trend seems to be closer to linear.

It is worth noting that over the entire flow velocity range considered the fluidelastic frequency (i.e., the frequency of

vibration under fluid loading) varies by less that 1
4
Hz for P=d ¼ 1:58 and less than 1

2
Hz for P=d ¼ 1:32: Had a
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Fig. 7. Typical fit of Eq. (11), P=d ¼ 1:58; U ¼ 9 m=s: –, Experimental data; 	; fitted curve.

C. Meskell, J.A. Fitzpatrick / Journal of Fluids and Structures 18 (2003) 573–593580



frequency domain analysis been employed, the effect of fluidelastic stiffness on the frequency would have been masked

as the maximum frequency resolution for this data is 1
4 Hz:

The effect of the acoustic resonance is clearly visible in both fluid damping and stiffness. In Figs. 9 and 11 the

magnitude of the fluid force parameters drops sharply in the region of U ¼ 9 m=s:
In general there is less scatter in the fluid stiffness data than the damping, but this can be attributed to the fact that

the fluid damping force is nearly an order of magnitude smaller than the fluid stiffness force.

In order to facilitate the use the damping data to predict the stability thresholds, a third order polynomial was fitted

to each data set subject to the constraint that it passes through the origin. This is a physical constraint, since there can

be no fluid force when there is no flow.

4.3. Predictions

The variation of fluid force parameters with flow velocity can now be used in a simple linearized model of the

fluid–structure dynamics to predict the instability threshold. The fluid stiffness is always positive, which means that a

static divergence is impossible in this velocity range. Furthermore, a linearized stiffness must, by definition, be

conservative. Therefore, the fluid stiffness can be ignored when estimating the critical velocity.
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For a linearized model, instability is caused by a dynamic divergence. This means that the tube motion will be

oscillatory, but with increasing amplitude of vibration. A limit cycle is not possible, except at the stability threshold

which occurs when the fluid damping exactly counteracts the dissipation within the structure

cs ¼ �cf : ð13Þ

Combining this condition with the empirically determined expressions describing the variation of cf with flow

velocity obtained from Figs. 8 and 9, a prediction for the stability boundary for each array is obtained. These stability

boundaries are plotted in Fig. 6. The extent of the error in the predictions can be assessed from Table 2.

The predictions for a pitch ratio of 1.58 systematically overestimate the experimentally determined values of critical

velocity by about 20%: It might have been expected that the predictions would have been closer, since the fluid force

coefficients were measured experimentally. However, in light of the low contribution of the damping force to the total

force (about 1%) this level of error is acceptable, particularly when compared to the theoretical predictions of

Rzentkowski and Lever (1998) which indicate a critical velocity twice that observed here. It is true that other researchers

(e.g., Tanaka and Takahara, 1981; Granger, 1990) have obtained closer agreement between linear models with
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experimentally determined parameters and the experimental stability thresholds, but these studies have been conducted

in water, and so the magnitude of the fluid forces was more significant.

The situation is considerably worse for a pitch ratio of 1.32. At the lowest level of mass damping parameter the

critical velocity from the linear model is nearly 100% in excess of the actual value observed, improving to an error of

40% at the highest level of damping considered. This large error cannot be attributed simply to systematic experimental

error as the contribution of fluid damping forces is about 4 times more significant than in the other array. It is likely that

the assumption of linearity itself is responsible for the large discrepancy in the predictions. Since the fluid force is

inherently nonlinear, any effective linear parameter estimate will include some contribution from nonlinear

components. These results suggest that for large amplitude vibrations, a linearized model is acceptable for a pitch

ratio of 1.58 but is not appropriate for the more densely packed array.

4.4. Forced response

In order to further demonstrate that nonlinearities are stronger for a pitch ratio of 1.32, a series of forced response

tests under fluid loading have been conducted. The tube was excited by the EMS with a band-limited (2–40 Hz) periodic

chirp, with a 16 s period. The amplitude of excitation was set at three levels, with the maximum chosen so as to avoid

impacting between the tube and the wind tunnel wall. Typical transfer functions between acceleration and excitation

force for the three levels of excitation are shown in Figs. 12 and 13, corresponding to a pitch ratio of 1.58 and 1.32,

respectively.

The transfer function for pitch ratio of 1.58 does exhibit some amplitude dependence. The resonant peak value drops

by about 20% (from 22:5 ms�2=N at low excitation to 18:5 ms�2=N at high excitation). The second array also shows a

dependence on the excitation amplitude, but here it is more apparent. The effective damping clearly increases with

excitation level (a reduction in FRF peak value) while the fluidelastic frequency decreases, implying nonlinear elements

in both fluid stiffness and damping. Since the more closely packed array exhibits more significant nonlinear behaviour,

the discussion will focus solely on the array with a pitch ratio of 1.32.

Based on the observations in this section, the general behaviour of a nonlinear model of the fluid force can be

summarized in Table 3.

5. Nonlinear fluid force model

Rearranging Eq. (8) and recalling that the fluid added mass is negligible yields

ms .y ¼ ðEðy; ’y;UÞ � cs ’y � ksyÞ: ð14Þ

The fluid elastic force can be decomposed into three functions, one in tube displacement y; the second containing only
coupled terms and the third in tube velocity ’y

Eðy; ’y;UÞ ¼ �N1ðy;UÞ � N2ðy; ’y;UÞ � N3ð ’y;UÞ: ð15Þ

The minus signs are included for consistency with the linear structural stiffness and damping. In the absence

of any additional excitation force, the instantaneous force acting on the tube is simply the product of the mass

and the acceleration. It should be noted that the linear model of the fluidelastic force considered previously in

Section 4 is simply the special case where it is assumed that N2 ¼ 0 and that N1;N3 are linear. The same free

response data which was used to obtain linearized parameter estimates are used here to obtain nonlinear parameter

estimates.

Table 2

Predictions for FEI thresholds using a linearized model

Pitch ratio 1.58 1.58 1.58 1.32 1.32 1.32

Logarithmic decrement, d 0.015 0.023 0.031 0.093 0.106 0.114

Mass damping parameter, dr 28.2 43.3 58.42 175.3 199.8 214.8

Reduced gap velocity, Vr 33.9 40.5 49.1 57.3 77.1 90.8

Predicted reduced gap velocity 38.2 47.7 60.1 104.9 120.3 127.3

% Error 12.7 17.8 22.4 83.1 56.0 40.2
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Combining Eqs. (14) and (15) yields an expression for the restoring force F which accounts for the effect of both the

structure and the fluidelastic force:

m .y ¼ Fðy; ’y;UÞ ¼ �ðN1ðy;UÞ þ ksyÞ � N2ðy; ’y;UÞ � ðN3ð ’y;UÞ þ cs ’yÞ: ð16Þ

As the modal mass of the structure ms is known ð1:05 kgÞ; the instantaneous restoring force is also known. To obtain
a model for the fluid force for each freestream flow rate, the total force may be approximated by a surface above the
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Fig. 13. FRF with fluid loading at three different levels of excitation, U ¼ 8 m=s; P=d ¼ 1:32: —, low excitation; ?; intermediate
excitation; - - -, high excitation.

Table 3

Qualitative behaviour of a nonlinear model

Increased flow velocity Increased response amplitude

Total effective damping Decreases Increases

Total effective stiffness Increases Decreases
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Fig. 12. FRF with fluid loading at three different levels of excitation, U ¼ 12 m=s; P=d ¼ 1:58: —, low excitation; ?; intermediate
excitation; - - -, high excitation.
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state plane ðy; ’yÞ: This approach to nonlinear system identification, referred to as the force state mapping technique, was

first proposed by Masri and Caughey (1979) and several applications of the method can be found in the literature

(Masri et al., 1987; Worden, 1990; Xu and Rice, 1998). Additional details of the application of the force state mapping

technique to this system can be found in Meskell et al. (2001).

In order to explore the functional form of N1 and N3; and hence F ; the intersection of the force state map with the zero
tube displacement and tube velocity planes has been calculated and are shown for a range of flow velocities in Figs. 14 and

15, respectively. It should be noted that in Fig. 14 N2 ¼ N3 ¼ 0 as ’y ¼ 0 while in Fig. 15 N1 ¼ N2 ¼ 0 since y ¼ 0: Thus,

Fy¼0 ¼ �ðN3ð ’yÞ þ cs ’yÞ; ð17aÞ

F ’y¼0 ¼ �ðN1ðyÞ þ ksyÞ: ð17bÞ

The relatively high data density at lower displacement amplitudes in Fig. 14 is due to the motion decaying

exponentially. As the amplitude approaches zero, the rate of change of amplitude is slower, and so the decrease in the zero
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Fig. 14. Total stiffness force against tube displacement.
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velocity displacement from one period to the next is much smaller at the end of the decay than at the start. The same is

true for Fig. 15.

There appears to be more scatter in the data of Fig. 15 than is evident for the displacement–force data (Fig. 14). This

can be attributed to two mechanisms.

The velocity measurement was monitored using 12-bit ADC, just as the displacement was, so one would expect a

comparable signal-to-noise ratio. The acceleration is a subset of the same measurement as that used in Fig. 14, but the

range of acceleration in the zero displacement plane is more than a factor of 30 smaller than the full range of

measurement. This means that the force data is more susceptible to noise in the acceleration record. Furthermore,

although the raw acceleration data was digitized with 12-bit precision, the force data in Fig. 15 will have only 7-bit

precision (212=30E27 ¼ 128 levels) so quantization error may be an issue. The intersection between the force surface

and the zero displacement plane is calculated by interpolating between the two points measured as the state-space

trajectory crosses the plane. This will mask the stratification of data which is characteristic of quantization error, but

will not alleviate it.
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Fig. 15. Total damping force against tube displacement.
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To illustrate the second mechanism, consider the tube motion to be a fixed amplitude sine wave. When the velocity

crosses zero, both the displacement and the acceleration are changing slowly with time (both are at the peak/valley of

the sine wave). This means that if the time at which the velocity is zero is miscalculated due to noise in the velocity

record, neither the corresponding displacement nor force will be strongly affected. The situation at the displacement

zero crossing is not the same. Here, the acceleration is changing rapidly, so noise in the displacement record may

produce a large error in estimating the force at zero displacement. Thus, the displacement–force curves (Fig. 14) are not

susceptible to noise in the tube velocity, but the velocity–force (Fig. 15) curves may be corrupted by errors in the

displacement record.

Notwithstanding the scatter in the data, there is a clear trend, which is flow velocity dependent, in the graphs of

Fig. 15. In order to emphasize the nonlinearity of these trends, a straight line has been fitted to the each data set and

then subtracted, thus removing the dominant linear relationship between velocity and force. The resulting residuals are

shown in Fig. 16. It is apparent that these residuals are not random, but are in fact governed by a predominantly
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Fig. 16. Velocity–force data with the linear trend removed.
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antisymmetric function, which becomes more pronounced with increased flow velocity. Similar, though less pronounced

behaviour was also noted for the data of Fig. 14.

Therefore, it was assumed that the fluidelastic force can be represented as the sum of a cubic stiffness and a cubic

damping. This model is perhaps the simplest which will satisfy the qualitative observations of the behaviour. It also has

the advantage that the fluid force has only antisymmetric (odd) terms which would be expected due to geometric

symmetry of the tube array,

N1 ¼ Zy3 þ kf y; ð18Þ

N2 ¼ 0; ð19Þ

N3 ¼ b ’y3 þ cf ’y; ð20Þ

) F ¼ �ðZy3 þ ðks þ cf ÞyÞ � ðb ’y3 þ ðcs þ cf Þ ’yÞ: ð21Þ

Thus the intersection of the force surface with the zero velocity (Fig. 14) and zero displacement (Fig. 15) planes will

yield

Fy¼0 ¼ �b ’y3 � ðcs þ cf Þ ’y; ð22aÞ

F ’y¼0 ¼ �Zy3 � ðks þ kf Þy: ð22bÞ

The model is similar to that developed by Price and Valerio (1990). The main difference is that in their model, the

fluid stiffness exhibits very strong nonlinearity, which results in relatively large amplitude harmonics in the free response

of the tube. This phenomenon has not been observed here. Notwithstanding that, the basic mechanism which limits the

tube motion is high order (i.e., greater than 1) polynomial terms in the fluid damping. Price and Valerio also allowed for

cross terms in their formulation (i.e., N2a0). In this study, once the parameters of Eq. (21) had been estimated (see

below), the time series of cross term N2 was calculated for each flow velocity:

N2ðtÞ ¼ m .y � ½N1ðyðtÞÞ þ ksyðtÞ þ N3ð ’yðtÞÞ þ cs ’yðyÞ�: ð23Þ

Unfortunately, no functional relationship between N2 and (y; ’y) was apparent. The only trend to emerge was that

the r.m.s. of N2 increased with flow velocity from almost zero at no flow to 0:3 N at 8:5 m=s: This does not imply
that there is no cross term at work in the fluid structure system, only that it is immersed in noise. However, without

a model for the functional form, N2 must be ignored. As will be discussed later, this represents the main weakness of

this study.

5.1. Results

Eqs. Eq. (22) have been fitted to each data set in Figs. 14 and 15. A total least-squares estimator was used since errors

are equally likely to occur in the measured force ð .yÞ as in the state variable measurement ( ’y or y). The fitted curves are

superimposed on the data for comparison.

Since the structural stiffness ks and damping cs are known, the fluidelastic model parameters, b; Z; cf and kf can be

estimated directly from the parameters obtained by the curve fit. The results of this parameter estimation are shown in

Figs. 17–20. In Figs. 17 and 18 the variation of the linear and the cubic fluid stiffness can be seen, respectively, while

Figs. 19 and 20 show the variation of the linear and the cubic fluid damping.

The positive linear fluid stiffness, indicating a total stiffness increasing with flow velocity, is consistent with the

experimental observation of a frequency of oscillation which also increases with flow velocity. Although the nonlinear

stiffness term does not play a significant role in the dynamics of this system, the negative sign of this parameter ðZÞ is
consistent with the qualitative observation of the system behaviour in Table 3. As will be demonstrated below, the fluid

damping parameters are also consistent with the qualitative behaviour of the experimental system.

In order to simplify the prediction of the system behaviour based on this model, the variation of the parameters with

velocity can be represented as low order polynomials in the range U ¼ 2:5-8:5 m=s: The order of the polynomial is
arbitrary and chosen by inspection

kf ¼B1U þ A1;

Z ¼B2U þ A2;

cf ¼B3U þ A3;

b ¼D4U
3 þ C4U2 þ B4U þ A4: ð24Þ
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The specific values of the coefficients are obtained by simple regression of the data in Figs. 17–20. These values are

summarized in Table 4.

5.2. Behaviour of the empirical nonlinear model

There are three aspects of the behaviour of the model which are of immediate interest: the fluidelastic threshold, the

limit cycle amplitude and the stability of the limit cycle.

The work done by the coupled fluid–structure system during a single period of oscillation is given by

W ¼
Z 2p=o

0

F ðy; ’y;UÞ ’y dt ð25Þ

where o is the circular frequency of vibration and F is the total force (structural and fluidelastic) acting on the tube (see

Eq. (16)).

The convention that negative work indicates energy being dissipated from the structure has been adopted. The total

force as a function of tube displacement and velocity has been determined empirically above

F ðy; ’y;UÞ ¼ �½ðkf ðUÞ þ ksÞy þ ZðUÞy3 þ ðcf ðUÞ þ csÞ ’y þ b ’y3�: ð26Þ

Substituting Eq. (26) into Eq. (25) yields the work done per cycle in terms of the model parameters:

W ¼ �
Z 2p=o

0

½ðkf þ ksÞy þ Zy3 þ ðcf þ csÞ ’y þ b ’y3� ’y dt: ð27Þ

Since ðkf þ ksÞy and Zy3 are conservative forces, they will do no work over one period and the expression can be further

reduced

W ¼ �
Z 2p=o

0

ðcf þ csÞ ’y2 dt þ
Z 2p=o

0

b ’y4 dt: ð28Þ

Assume that over one cycle the tube displacement is given by a constant amplitude sinusoid.

y ¼A sinðotÞ;

) ’y ¼ � Ao cosðotÞ: ð29Þ

A constant amplitude is admissible since the damping levels (whether positive or negative) are low so that the amplitude

of vibration is changing slowly. Considering the motion to have only a single frequency component, rather than a

combination of harmonics, is justified by the weakness of the nonlinearities.

Using Eq. (29) in Eq. (28)

W ¼ �A2o2ðcf þ csÞ
Z 2p=o

0

cos2ðotÞ dt þ A4o4b
Z 2p=o

0

cos4ðotÞ dt; ð30Þ

3W ¼ �A2op ðcf þ csÞ þ
3

4
ðbA2o2Þ

� 	
: ð31Þ

It should be noted that o; cf and b are functions of the flow velocity U ; which have been determined empirically in the

last section.

When the tube motion has established a limit cycle, the total work done during the course of one cycle period must

be zero,

) W ¼ 0: ð32Þ

Table 4

Specific parameter values for the current array

A B C D

kf �40 29 — —

Z 0.45 �0.22 — —

cf 0.21 �0.27 — —

b �7.83 3.99 �0.245 �5.4� 10�3
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Combining this condition with Eq. (31) provides an expression for the limit cycle amplitude in terms of the parameters

from the cubic damping model. Some manipulation yields

3A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
4

3

ðcf ðUÞ þ csÞ

bðUÞoðUÞ2

s
: ð33Þ

Since b is positive in the range of interest (Fig. 20), and o by definition is positive (a negative frequency in this

situation implies a static divergence), the limit cycle amplitude predicted by Eq. (33) will be real only if ðcf þ csÞ is
negative. At first, this appears to be the same criterion as was used to obtain stability threshold predictions from the

linearized model. However, since the effect of the nonlinear damping (which for the cubic model has a stabilizing

influence) is accounted for explicitly rather than by measuring an apparent linear damping, the estimates of cf from the

nonlinear model are substantially different from those of the linearized model. This can be seen by comparing Fig. 9

with Fig. 19.

If the limit cycle is to be stable, any perturbation to the limit cycle must decay. In other words, if the motion is

disturbed so that the amplitude of motion is increased, the work done per cycle must be negative to dissipate the added

energy. Conversely, a reduction in the vibration amplitude must produce positive net work, so that energy is transferred

from the flow into the structure. Therefore, @W=@A must be negative. Differentiation of Eq. (31) yields

@W

@A
¼ �Apo½2ðcf þ csÞ þ A23bo2�: ð34Þ

Substituting the limit cycle amplitude obtained from Eq. (33) into the equation above yields a simplified expression for

the derivative at the limit cycle amplitude,

@W

@A

� �
LC

¼ 2poAðcf þ csÞ: ð35Þ

As the limit cycle amplitude A is nonzero and 2po is positive, @W /@A will be negative only if ðcf þ csÞ is negative. This is
the same condition for the nonlinear model to yield a real valued limit cycle amplitude that was noted above. Therefore,

any limit cycle amplitude predicted by the model will be stable. It has been suggested by Rzentkowski and Lever (1992,

1998), that the cause of the hysteretic behaviour of the fluidelastic stability threshold can be attributed to the possibility

of an unstable limit cycle. In this context, the fact that the cubic damping model identified here predicts that any limit

cycle which occurs will be stable is supported by the observation made in Section 2 that neither array under

investigation exhibited hysteretic behaviour.

5.3. Predictions

Using parameter estimates from Eq. (24) in Eq. (33) the variation with flow velocity of r.m.s. of the tube response was

calculated for the same three damping conditions as were used in the tests of Section 2. These predictions can be seen in

Fig. 21. The critical velocities predicted by the nonlinear model are more accurate than those from the linear model, as

can be seen in Table 5.

Comparing Fig. 4 with Fig. 21 clearly shows that the predicted limit cycle amplitudes for post stable behaviour are of

the order of 100% greater than those observed experimentally. Nonetheless, there is good qualitative agreement

between experimental results and the identified nonlinear model.
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There are several possible explanations for the discrepancies between the observed and predicted amplitudes. The

most obvious is that potential cross terms (i.e., terms involving a cross product of y and ’y) in the fluid force model were

neglected. Such terms would couple tube displacement and velocity, and would reasonably be expected to contribute to

the dynamics of the system. No effort has been made to include turbulent buffeting in the predictions of tube motion.

While this is valid for the parameter identification procedure, it is not appropriate for predicting response amplitude.

Rzentkowski and Lever (1998) have shown that turbulent buffeting (or indeed any random excitation uncorrelated with

the tube motion) would decrease the observed amplitude of vibration by as much as 25%.

The cubic damping parameter, b; is responsible for stabilizing the system and so an underestimation of this parameter

would lead to an over estimation of the limit cycle amplitude. It is worth noting that the r.m.s. of the cubic fluid

damping force is less than 0:5% of the overall system restoring force F ; so some error in parameter estimation is likely.

The parameter estimates obtained with the force state mapping technique are very sensitive to phase errors in the

response data (see Meskell and Fitzpatrick, 2002). Combining the functional forms determined by force state mapping

from this study with a parameter identification procedure which is more robust to phase errors may produce better

estimates of the limit cycle amplitude. Such a scheme was proposed by Mottershead and Stanway (1986) and extended

to systems with weak nonlinear damping by Meskell (2000). However, further work, either theoretical or experimental

is needed to determine the appropriate functional form for the cross term N2:

6. Conclusions

Two normal triangular tube arrays with a single flexible tube have been tested subject to cross flow at large

amplitudes of vibration. Linearized fluid force parameters have been identified from free response data using a

nonlinear curve fitting technique. It has been found that for a pitch ratio of 1.58 the critical velocities based on these

parameters compared well with experimentally determined thresholds. However, in the array with pitch ratio of 1.32,

the predicted instability thresholds did not agree well with experimental results, indicating that nonlinearity between

fluid force and the tube motion is more significant in more closely packed arrays. Further direct evidence of the extent

of nonlinear behaviour has been obtained by considering the forced response of the tube under fluid loading at different

levels of excitation (i.e., displacement). It was found that for a pitch ratio of 1.58 the FRF was not modified

significantly, implying a pseudo-linear system is adequate for modelling purposes. For the denser array however, the

damping clearly increased with amplitude and there was a slight shift in natural frequency indicating a decrease in total

stiffness.

An empirical nonlinear model has been proposed for the fluid force the parameters of which have been obtained from

free decay data using the force state mapping technique. The nonlinear model was then used to predict critical velocity

for instability and the subsequent post-stable behaviour. Comparison of the results with experimental data showed

good agreement for the critical velocity prediction. Although similar trends for the limit cycle amplitudes have been

obtained, the values are systematically over-predicted and several possible sources of this error have been identified.

Nonetheless, direct evidence of nonlinearity in the coupled fluid–structure system has been presented and a qualitative

assessment of the behaviour has been made.
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